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SUMMARY

The generalized linear models were developed for a broad class of practical problems
related with the sets of multivariate categorical data. The analysis of such models
can be based on the maximum likelihood principle. This approach has been discussed
in Lang (1996; Ann. Statist. 24, 726-752), where the likelihood stationary equations
and the large-sample distributions, as well as an iterative fitting algorithm, were
presented. In this paper we give a direct method of deriving the maximum likelihood
equations. This approach is free from the superfluous assumptions and, in result, can
be applied to the experiments with a priori empty cells. The theory is illustrated by
four simple examples.

KEY WORDS: multivariate categorical data, logistic transform, linear model, multi-
nomial distribution.

1. Introduction

In experimental research the scores of the multiple classification occur frequently.
In such cases the multinomial distribution provides a helpful tool for modelling the
response data. A broad class of such problems can be solved with the aid of the
generalized linear models (GLM). They are widely discussed by McCullagh and Nelder
in their well known monographs (McCullagh and Nelder, 1983, 1989). However, there
are some areas which are still left for further active research, as recently was pointed
out by McCulloch (2000) and Christensen (2000).

In construction of the GL models, the multivariate logistic transform and properly
selected linear space play the key role. The analysis of such models can be conducted,
among other methods, by the method of maximum likelihood (ML). This approach
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has been discussed in Lang (1996), where the ML estimators and their asymptotic
distribution, as well as the relevant fitting algorithm, were presented. In this paper it
is shown, how the ML stationary equations, which form the base for the whole theory,
can be derived more directly, without superfluous assumptions.

In Section 2 we state the basic facts about the family of multinomial distribu-
tions. In the next section we describe the general multivariate logistic transform and
characterize the ML equations for fitting the generalized linear model. The equations
obtained are the extentions of those obtained by Lang (1996), as they allow modelling
irregular experiments in which some cells of the multiple classification are empty by
assumption. The last section contains some simple examples illustrating the diversity
of problems covered by the GL models, and exhibiting the practical aspects of the
ML estimation.

In what follows we will use the symbols AT, A=}, and C(A) for the transpose, the
inverse, and the column space of A. The orthogonal complement of C(A) under the
standard inner product will be denoted by C*(A). Moreover, we will use the symbol
u’ to denote the diagonal matrix with elements of a vector u on its diagonal, and the
symbol u~? for the inverse of u® if the latter matrix is non-singular. Observe that if

u~9 exists, then u=%u = 1, where 1 is a vector with all elements equal to one.

2. ML estimation of multinomial distribution parameters

Categorical response data are usually modelled with the use of the multinomial di-
stribution. Let us assume that we have a system of s independent random vectors
Y@y, t=1,2,...,s, each y(;) following the multinomial distribution specified by a num-
ber m; and a probability vector ;) of order k;. Formally the single vector Y@) is
composed of the random variables y;1, ys2, ..., ik, fulfilling a constraint E;;l Yij = my,
where k; is the number of categories, y;; is the number of successes in the j-th cate-
gory, and m; is the number of objects being classified. The probability of the success
of j-th category corresponding to the vector y ;) is represented by the j-th element
of the vector m(;y. These probabilities fulfill the multinomial sampling constraint,

ki
ij =1, (1)
i=1

as it is called by Lang (1996). Then the probability of observing y ;) is

1
mi: itz oYk
yn!yiz! .. yik~! il 742 ik;
£
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and the kernel of the log-likelihood function takes the form
Umy: yey) = y’ﬂ-) log 7 (s, (2)

where log 7(;) is the vector of logarithms, log 7(;)= (log 1, log miz, ..., log ’ﬂ'iki)T.

Taking into account the sampling constraint (1), which has to be fulfilled by ele-
ments of each vector m;), the parameter space for the joint distribution of Y1) Y(2) o
¥(s) takes the form

Q={m:7>0 BTr=1,},

where w = ('n'(qi), ng), ...,w%’;))T and B is a block-diagonal matrix,
B =diag(1; , 1k, 1g,) = ®i_; (1k,)- (3)

In view of the constraint BTsr = 1, the set  is contained in the k — s dimensional
affine space, where &k = k; + ko + ... + k5. Since the vectors Y()s Y(2)s Y(s) aT€
considered as independent, the kernel of the joint log-likelihood function is the sum
of the kernels of the form (2). In consequence, the likelihood equation for 7 can be
written as

yTTl'_&H =0, (4)
where y = (y{l),yz;), ...,y%’;))T and H is any such matrix that C(H) = C1(B). Ob-
serve that the natural estimates of the probabilities ;;, provided by the frequencies

Pij = Yij/me, 1 =1,2,...,8, j = 1,2,...,k;, form a solution of (4) and so, are the ML
estimates.

3. Logistic transforms and GL models

The logistic transform links the expectation of the frequency vector p, E(p) = m,
with a new parameter vector 7. This mapping can be expressed as

n = CT log(Lm), (5)

where L is a fixed binary matrix, such that the product L compresses selected pro-
bability sums, and C7 is usually a matrix of contrasts. The constructions of matrices
L and C are given by Glonek and McCullagh (1994). If L is the identity matrix,
the individual elements of n are referred to as log-linear contrasts and, otherwise,
they are referred to as multivariate logistic contrasts (Glonek, 1996). However, if it is
desired that (5) represents the one-to-one transform, then not all elements of 1 can
be considered as contrasts.
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The GL model appears when the range of the logistic transform w — 7 is restricted
to a priori given linear subspace. Such a relationship can be expressed as

n € C(X), (6)

where X is a matrix of full column rank. The matrix X expresses some postulated
properties of the model. It reflects, with the use of the mapping (5), some relationships
among probabilities contained in the vector mr, or relates the probability vectors m(;
with the experimental conditions. In the latter case, we assume that each y(; is
observed under the conditions specified by the vector x(;y of concomitant variables.
Such models can be seen as the family of multinomial variables with the restricted
parameter space

Q, = {r:7>0,B 7 =1,, CTlog(Lw) eC(X)}.

The likelihood equation for estimating the probability vector 7 is stated in the
following
THEOREM 1. If y is a response vector from the product of s multinomial distributions,
then the ML estimator of w, under Sz, and a vector X\ fulfill the equations:

y— (mlﬁa), mgﬂ'g), . msﬂ'z;))T = Gale(ﬂ'?i) - W(i)ﬂg))LTD—ICMA, (7
and

M7 CT log(Lx) =0, (8)
where D =(Lm)%and C(M) = C1(X).
Proof. In view of the definition of the logistic transform and of the property of the
matrix M, the condition (6) is equivalent to (8) or to the equality
MTn =o0.

Taking into account the last restriction and the sampling constraint in the log-
likelihood function, we have

T y)=yTlogm — ATMTy — uT(BTw — 1,), 9)

where A and p are the vectors of the Lagrange multipliers. If « > O then, as was
observed by Grizzle at al. (1969), the Jacobian of the transform m — 7 takes the
form

577_ Try—1
awT_CD L.
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Differentiating (9) with respect to 7 and A, we obtain

ot

o _ -6, _1Tp-1 _
=" Y L"D™"CMAX - By, (10)
and’
olt T

Comparing (11) with zero vector, we obtain the condition (8). To show (7), first
observe that the matrix H = ®f=1(7r‘(5i) - W(i)wa)) =qnd - @f=1(ﬂ(i)ﬁ%;)) spans the
orthogonal complement of C(B), i.e. C(H) = C*(B). Therefore, equating (10) with a
zero vector and premultiplying the resulting equation by H, leads to the equation

Y= &zt (moyy) 70y =iz (7, — mw(ym ) )LTD T CMA. (12)
But
63;?=1(7l'(i)1\',(1;))71'_6y = 69?=1(7r(¢)1£,)y = (mlﬂ'a), mzﬂ'g), s msﬂ'g;))T,

which together with (12) gives the equation (7). O
The following two corollaries exhibit some simplification of the equation (7).

COROLLARY 1. If s =1 and the matriz C in the logistic transform (5) is such that
17C = 0, then the equation (7) takes the form

y —mimqy = nyLTDTICMA.
If in addition L =1, it simplifies further to the form
y —mimqy = CMA.
Proof. The first simplification follows from the equalities
nHL'D7'C = n{ )L (=) LT)'C =17C =0,

while the second — from the observation that #(;)L”D~" = ﬂfl)(wa))_1= I. O
COROLLARY 2. Ifs =1, 1 € C(X), and C =1, then the equation (7) takes the form

y-—mimwq) = wfl)LTD"lMA,
and, if in addition L =1, it simplifies further to the form

Yy —mum) = M. (13)
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The next corollaries contain the direct generalization of the results established by
Lang (1996), in his Theorem 3.1.

COROLLARY 3. If in the logistic transform (5) the matrices C and L have the forms
CT'=0L,(C]), L=ai, 1), (14)

where C is of order ¢; X I; and such that 17C; = 0, and L; is of order l; x k;, then
the equation (7) can be expressed as

Yy = (mawlyy, menly), ., mem(y)’ =w’LTDTICMA, (15)
where D = @f_, (L;m;)%. If in addition L = 1, it simplifies further to the form

y— (mlﬂ'a), mzwg), vy mswa))T = CM.

Proof. For the first simplification it suffices to observe that
@le(r(i)ﬂ'a))LTD_IC = @f=1(W(i)ﬂE)Lg(LiW(i))—éci)z @;?:1(71'(,;)1?;01'),

while the second simplification follows from the argument used in the proof of Corol-
lary 1. O

COROLLARY 4. If in the logistic transform n =log(Lw) the matriz L = &F_;(L;),
where L; is of order l; X k;, and ®i=1(1;‘:)M = 0, then the equation (7) reduces to the
form

y — (mlﬂ'a), mgwg), oy msﬂ'%;))T =mLTD M),
where D = &5_, (L;m;)®. If in addition L = 1, it simplifies further to the form

y - (mur{l), mz‘l'l'%;), oy msﬂ'(j;))T =M.
Proof. The first simplification results from the equalities:
Sl (T (i) T(y) = izt (M) iz (7))
and
@1 (7)) L"D™M = @_, (v () LT (Lim)) )M = &}, (1{ )M = 0.
The second simplification is obvious. O

Remark 1. Note that the equation (7) reduces also to the form (15), when M can be
partitioned, M = (M] ,MZ, ..., MT), in such a way that if for some i C; = I, then
1L M; =0, and 1{C; = 0 for remaining i.
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Remark 2. Contrary to the result of Lang (1996), the established equations enable
one to consider the problem of the ML estimation of the probability vector m when
some cells of multiple classification are empty by assumption and when the different
logistic transfoms, defined by the submatrices C; and L;, are applied to different
vectors m(;), i.e. when C; # C; and L; # L; for ¢ # j.

4. Examples

In this section we present some examples which show a broad range of applications of
the GL models and simultaneously exhibit the methods of solving the corresponding
maximum likelihood equations. For simplicity of presentation we restrict our attention
to the examples in which the logistic transform consists only of the log-linear contrasts,
i.e., L is the identity matrix. This corresponds to the assumption that categories of the
multinomial distribution are neither ordered nor form any hierarchical structure, in
which cases the cumulative and conditional probabilities are of main interest (Agresti,
1990, Lang and Agresti, 1994).

For the first example let us assume that there are two discrete random variables A
and B with two and three categories, respectively. Moreover, let the joint distribution
of A and B be defined by the probabilities m;; = P(A =i, B = j),

11 712 713
o1 722 723

which fulfill a single (s = 1) sampling constraint w11 +m12 +m13+ T2y +Tag + 723 = 1.
The main problem which is usually posed in this context concerns the independence

of the variables A and B . The appropriate condition takes then the well known form
T T
M2 _ T (16)
721 W22 723

which can be expressed as the log-linear model n =log(w) € C(X), where

T11 1 110

21 1 100

_ mT12 _ 1 010
T = o and X = 100 0
m13 1 011

23 1 001

Since C = L =I5 and 14 € C(X), the assumptions of Corollary 2 are fulfilled. Thus
the ML estimator of 7 is a solution of (8) together with (13). The first equation can
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be expressed as

1 -1 -1 1 00 0
(0 0 1 -1 -1 1)10”‘(0)’ (a7

while the second takes the form
y—mm = M, (18)

where XA = (A1, A2)7 and M is specified in (17). Since the conditions (17) and (16)
are equivalent, we are looking for s fulfilling (18) and (16). It can be checked that
such a solution is provided by the estimates
where Yi- = Yi1 +Yi2 +¥i3, 1 =1, 2, Yj = Y15 + Y25, Jj=123and m= Y. + y2..
These estimates are conventionally calculated for the two-dimensional contingency
tables, under the independence assumption.

Note that the vector y—m# = M describes the differences between the observed
frequencies and their expected values when the assumption of independence is sati-
sfied. Therefore, the norm of M is a measure of fitting the model to the observed
data.

As a second example let us consider the incomplete 3 x 3 contingency table of the
form

11 Ti12 T3
21 22 *
31 * *

In such case we can be interested in fitting the quasi-independence model, as it is
called by Goodman (1968). This assumption implies the equality

™ T
2 (19)
m21 22

which again can be expressed in the form
(1 -1 0 -1 1 0)logm =0, (20)

where wT'= (w11, 712, m13, 21, T22,731). Since the assumptions of Corollary 2 are
again satisfied, the ML estimator of 7 is a solution of the equations (19) and (13),
with M given in (20). In consequence we obtain the set of equations:

Y11— MA11= A, Yi2— mmwe= —A, Yi3— mmwiz= 0,
Y21— MT21= —A, Yo2— MmW2= ],
y31— mmz1= 0,
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They lead to the solutions:

11 = YY1t/ (Mm), F12 = y1ayua/(Mm), 713 =y13/m,
fro1 = YaxYu1/(Mm), Ta2 = YouYs2/(Mm),
g1 = Y13/m,

where yix = yi1 + Uiz, Yuj = Y15 + Y25, 8, J =1, 2, and M = yu1 + y12 + Y21 + Y22,
while m = M + y13 + y31. Actually it means that the upper left 2 x 2 block of our
triangular contingency table provides the estimates under the independence condition
(19), which are then corrected with respect to the additional non-empty cells.

The general recursive procedure for fitting the expected cell frequencies for trian-
gular tables under quasi-independence model was proposed by Bishop and Fienberg
(1969). The alternative methods for establishing the maximum likelihood estimates
can be found in Goodman (1968).

For the third example let us assume that there are four categories and two po-
pulations, but not all categories are possible for all objects of each population. To
be more specific, let us assume that the two multinomial distributions, for the first
and second group of my and of ms objects, sampled from the first and the second
population, respectively, are determined by the first and second row of the table

Tl T12 713 *
* T2 T23 T4

Although the rows represent here independent distributions, we can postulate some
relations between probabilities 7;;. Adopting the quasi-independence, we have the
condition

iz _ T (21)
To2 W23
It can be expressed as
(001 -1 -1 1 0 )logw =0, (22)

where 7= (ﬂ'{l),ﬂ"(];)) = ((m11,m12,713), (T2, 23, T24)) is such that 71'{1)13 = 1,
11'(T2)13 = 1. Using now Corollary 4 with L = I the likelihood equation for 7 consists
of the condition (21) and the equation

y— (mlwa),mgﬂ'g))T = M),
where M is given in (22). They lead to the estimates

Fu=yi/mi1, %12 =Yys2/(Mmy), 713 = y1.Y3/(Mmy), *
* foe = Youlua/(Mmg), Foz = youysa/(Mmz), oa=y2a/mo,

where ¥ = yi1 +¥i2, 1 = 1, 2, Yuj = Y15 +¥25, J = 2, 3, and M = y12+y13 + Y22 +Y23.
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For the last example let us assume that A is a binary random variable, with
the success probability . Moreover, assume that A is observed together with a
deterministic covariate variable z. In such case it is interesting to determine the

probability 7 as a function of z, 7=n(z). Usually m(z) is modelled in the form
ea-}-ﬁ:c
@) = Tare

which ensures the inequality: 0 < 7(z) < 1. In result

log lj_r—(m)— = o+ fz. (23)

(z)
Assume now that the variable A is observed only at three points: z1, o, 73. Moreover,
assume that the number of classified objects for x; is m; and that

7r1i=7r(:1:,-),7r2,-=1—7T(x,-),i=1, 2, 3. (24)
Then, in view of (23), we have the equality
U5 I =
2 = 1 =z ( g ) ) (25)

where m results from mapping of the probability vector = = (ﬂ'a),ﬂa),ﬂ'@))T =
(T11, 21, T12, 22, W13, w23) ¥ by the logistic transform

1 -1 0 00 0
n={0 01 -1 0 0 |logm. (26)
0 00 01 -1

Since the assumptions of Corollary 3 with L = I are fulfilled, the ML estimator of 7
satisfies the equations

y — (mlw'(’i), mzwg),mg‘n%’;))T = CM)\

and
MTCT logn =0,

where C is given in (26) while

MT = ($3 — T2,T1 — T3,T2 — (L‘l).
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In view of (24), they lead to the system of linear equations

Yy —mimr = (T3 — 22)A,
Y12 —momz = (1 —x3)A, (27)
Y13 —mamiz = (ZTa2 —T1)A,

which must be solved together with the nonlinear equation of the form
(z3 — 22)g(m11) + (21 — 23)9(T12) + (T2 — T1)g9(M13) = 0, (28)

where g(m1;) = log(m1:/(1 — 7)), ¢ = 1, 2, 3. This can be done with the use of
the algorithm described by Lang (1996) or by Glonek (1996). Having the solution w
one can find the ML estimator for the parameters « and J, since the equation (28)
actually ensures the consistency of the system (25). Note also that the right hand
side of (27) provides a measure of fitting the assumed model.

It can be surprising that so different experimental situations can be fitted into the
same theoretical frames. But, it is not so, since the GL models enable one to combine
the linear structures with nonlinear transformations and the ML approach is really
very powerful inference tool.
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Estymacja metoda najwigkszej wiarogodnosci dla wielowymiarowych
danych skategoryzowanych

STRESZCZENIE

Szereg probleméw dotyczacych badanf, w ktérych odnotowuje sig rezultaty wielokrot-
nej klasyfikacji ustalonego zespotu obiektéw, moze by¢ rozwigzanych z uzyciem uogél-
nionych modeli liniowych. Analize takich modeli mozna wyprowadzié z zasady naj-
wigkszej wiarogodnoésci. Takie podejicie zostalo oméwione przez Langa (1996; Ann.
Statist. 24, 726-752), ktéry przedstawil m.in. réwnania najwigkszej wiarogodnoéci
oraz podal iteracyjne algorytmy ich rozwigzywania. W obecnej pracy réwnania naj-
wiegkszej wiarogodno$ci wyprowadzono bezpoérednio. Pokazane jest podejécie wolne
od zbednych zalozen, ktére moze byé¢ stosowane do modelowania eksperymentéw, w
ktérych ustalone podklasy wielokrotnej klasyfikacji sg z zalozenia puste. Teorig zilu-
strowano czterema przykladami.

SLOWA KLUCZOWE: wielowymiarowe dane skategoryzowane, transformacja logistyczna,
model liniowy, rozklad wielomianowy.



